Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892966

RESUMO

Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation. Although sympatric speciation has been controversial since Darwin suggested it in 1859, there are several strong theoretical or empirical evidences to support it. Sympatric speciation associated with soil bacteria remains largely unexplored. Here, we provide potential evidence of sympatric speciation of soil bacteria by comparison of metagenomics from two sharply contrasting abutting divergence rock and soil types (Senonian chalk and its rendzina soil, and abutting Pleistocene basalt rock and basalt soil). We identified several bacterial species with significant genetic differences in the same species between the two soil types and ecologies. We show that the bacterial community composition has significantly diverged between the two soils; correspondingly, their functions were differentiated in order to adapt to the local ecological stresses. The ecologies, such as water availability and pH value, shaped the adaptation and speciation of soil bacteria revealed by the clear-cut genetic divergence. Furthermore, by a novel analysis scheme of riboswitches, we highlight significant differences in structured non-coding RNAs between the soil bacteria from two divergence soil types, which could be an important driver for functional adaptation. Our study provides new insight into the evolutionary divergence and incipient sympatric speciation of soil bacteria under microclimatic ecological differences.

2.
FEBS Open Bio ; 11(9): 2507-2524, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34196123

RESUMO

Here, we introduce a novel 'evolution of protein domains' (EvoProDom) model for describing the evolution of proteins based on the 'mix and merge' of protein domains. We assembled and integrated genomic and proteomic data comprising protein domain content and orthologous proteins from 109 organisms. In EvoProDom, we characterized evolutionary events, particularly, translocations, as reciprocal exchanges of protein domains between orthologous proteins in different organisms. We showed that protein domains that translocate with highly frequency are generated by transcripts enriched in trans-splicing events, that is, the generation of novel transcripts from the fusion of two distinct genes. In EvoProDom, we describe a general method to collate orthologous protein annotation from KEGG, and protein domain content from protein sequences using tools such as KoFamKOAL and Pfam. To summarize, EvoProDom presents a novel model for protein evolution based on the 'mix and merge' of protein domains rather than DNA-based evolution models. This confers the advantage of considering chromosomal alterations as drivers of protein evolutionary events.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química , Software , Algoritmos , Bases de Dados de Proteínas , Humanos , Anotação de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas/metabolismo , Proteômica/métodos , Fluxo de Trabalho
3.
FEBS J ; 288(17): 5201-5223, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33756061

RESUMO

Circulating animal coronaviruses occasionally infect humans. The SARS-CoV-2 is responsible for the current worldwide outbreak of COVID-19 that has resulted in 2 112 844 deaths as of late January 2021. We compared genetic code preferences in 496 viruses, including 34 coronaviruses and 242 corresponding hosts, to uncover patterns that distinguish single- and 'promiscuous' multiple-host-infecting viruses. Based on a codon usage preference score, promiscuous viruses were shown to significantly employ nonoptimal codons, namely codons that involve 'wobble' binding to anticodons, as compared to single-host viruses. The codon adaptation index (CAI) and the effective number of codons (ENC) were calculated for all viruses and hosts. Promiscuous viruses were less adapted hosts vs single-host viruses (P-value = 4.392e-11). All coronaviruses exploit nonoptimal codons to infect multiple hosts. We found that nonoptimal codon preferences at the beginning of viral coding sequences enhance the translational efficiency of viral proteins within the host. Finally, coronaviruses lack endogenous RNA degradation motifs to a significant degree, thereby increasing viral mRNA burden and infection load. To conclude, we found that promiscuously infecting coronaviruses prefer nonoptimal codon usage to remove degradation motifs from their RNAs and to dramatically increase their viral RNA production rates.


Assuntos
COVID-19/genética , Uso do Códon/genética , Evolução Molecular , SARS-CoV-2/genética , Animais , COVID-19/virologia , Códon/genética , Biologia Computacional , Código Genético/genética , Genoma Viral/genética , Humanos , Filogenia , RNA Mensageiro/genética , SARS-CoV-2/patogenicidade , Proteínas Virais/genética
4.
Nucleic Acids Res ; 49(D1): D1113-D1121, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33166390

RESUMO

The recent outbreak of COVID-19 has generated an enormous amount of Big Data. To date, the COVID-19 Open Research Dataset (CORD-19), lists ∼130,000 articles from the WHO COVID-19 database, PubMed Central, medRxiv, and bioRxiv, as collected by Semantic Scholar. According to LitCovid (11 August 2020), ∼40,300 COVID19-related articles are currently listed in PubMed. It has been shown in clinical settings that the analysis of past research results and the mining of available data can provide novel opportunities for the successful application of currently approved therapeutics and their combinations for the treatment of conditions caused by a novel SARS-CoV-2 infection. As such, effective responses to the pandemic require the development of efficient applications, methods and algorithms for data navigation, text-mining, clustering, classification, analysis, and reasoning. Thus, our COVID19 Drug Repository represents a modular platform for drug data navigation and analysis, with an emphasis on COVID-19-related information currently being reported. The COVID19 Drug Repository enables users to focus on different levels of complexity, starting from general information about (FDA-) approved drugs, PubMed references, clinical trials, recipes as well as the descriptions of molecular mechanisms of drugs' action. Our COVID19 drug repository provide a most updated world-wide collection of drugs that has been repurposed for COVID19 treatments around the world.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Bases de Dados de Produtos Farmacêuticos/estatística & dados numéricos , Reposicionamento de Medicamentos/estatística & dados numéricos , SARS-CoV-2/efeitos dos fármacos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Ensaios Clínicos como Assunto/métodos , Ensaios Clínicos como Assunto/estatística & dados numéricos , Mineração de Dados/métodos , Mineração de Dados/estatística & dados numéricos , Aprovação de Drogas/estatística & dados numéricos , Reposicionamento de Medicamentos/métodos , Epidemias , Humanos , Aprendizado de Máquina , SARS-CoV-2/fisiologia
5.
Sci Rep ; 10(1): 15628, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973219

RESUMO

In contrast to fossorial and above-ground organisms, subterranean species have adapted to the extreme stresses of living underground. We analyzed the predicted protein-protein interactions (PPIs) of all gene products, including those of stress-response genes, among nine subterranean, ten fossorial, and 13 aboveground species. We considered 10,314 unique orthologous protein families and constructed 5,879,879 PPIs in all organisms using ChiPPI. We found strong association between PPI network modulation and adaptation to specific habitats, noting that mutations in genes and changes in protein sequences were not linked directly with niche adaptation in the organisms sampled. Thus, orthologous hypoxia, heat-shock, and circadian clock proteins were found to cluster according to habitat, based on PPIs rather than on sequence similarities. Curiously, "ordered" domains were preserved in aboveground species, while "disordered" domains were conserved in subterranean organisms, and confirmed for proteins in DistProt database. Furthermore, proteins with disordered regions were found to adopt significantly less optimal codon usage in subterranean species than in fossorial and above-ground species. These findings reveal design principles of protein networks by means of alterations in protein domains, thus providing insight into deep mechanisms of evolutionary adaptation, generally, and particularly of species to underground living and other confined habitats.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Mutação , Mapas de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo , Animais , Humanos , Filogenia
6.
Life (Basel) ; 6(3)2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27527218

RESUMO

The existence of multiple copies of genes is a well-known phenomenon. A gene family is a set of sufficiently similar genes, formed by gene duplication. In earlier works conducted on a limited number of completely sequenced and annotated genomes it was found that size of gene family and size of genome are positively correlated. Additionally, it was found that several atypical microbes deviated from the observed general trend. In this study, we reexamined these associations on a larger dataset consisting of 1484 prokaryotic genomes and using several ranking approaches. We applied ranking methods in such a way that genomes with lower numbers of gene copies would have lower rank. Until now only simple ranking methods were used; we applied the Kemeny optimal aggregation approach as well. Regression and correlation analysis were utilized in order to accurately quantify and characterize the relationships between measures of paralog indices and genome size. In addition, boxplot analysis was employed as a method for outlier detection. We found that, in general, all paralog indexes positively correlate with an increase of genome size. As expected, different groups of atypical prokaryotic genomes were found for different types of paralog quantities. Mycoplasmataceae and Halobacteria appeared to be among the most interesting candidates for further research of evolution through gene duplication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...